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� Mental effort is correlated to the difÞculty level of neurofeedback during brain self-regulation.
� The difÞculty threshold that balances mental effort is higher than maximum classiÞcation accuracy.
� Threshold adaptation based on mental effort allows progressively increasing the difÞculty level.

a b s t r a c t

Objective: Considering self-rated mental effort during neurofeedback may improve training of brain self-
regulation.
Methods: Twenty-one healthy, right-handed subjects performed kinesthetic motor imagery of opening
their left hand, while threshold-based classiÞcation of beta-band desynchronization resulted in proprio-
ceptive robotic feedback. The experiment consisted of two blocks in a cross-over design. The participants
rated their perceived mental effort nine times per block. In the adaptive block, the threshold was adjusted
on the basis of these ratings whereas adjustments were carried out at random in the other block.
Electroencephalography was used to examine the cortical activation patterns during the training
sessions.
Results: The perceived mental effort was correlated with the difÞculty threshold of neurofeedback
training. Adaptive threshold-setting reduced mental effort and increased the classiÞcation accuracy
and positive predictive value. This was paralleled by an inter-hemispheric cortical activation pattern in
low frequency bands connecting the right frontal and left parietal areas. Optimal balance of mental effort
was achieved at thresholds signiÞcantly higher than maximum classiÞcation accuracy.
Conclusion: Rating of mental effort is a feasible approach for effective threshold-adaptation during
neurofeedback training.
Significance: Closed-loop adaptation of the neurofeedback difÞculty level facilitates reinforcement
learning of brain self-regulation.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Brain-computer and brain-machine interfaces (BCI/BMI) are uti-
lized in a variety of neurological and neuropsychiatric conditions
(Daly and Wolpaw, 2008). While assistive interfaces aim to replace
lost functions by controlling external devices, the goal of restorative
approaches is to reduce disease-speciÞc symptoms. By providing
contingent feedback of speciÞc neuronal states, restorative BCI/
BMI use operant conditioning to reinforce the targeted brain states
or dynamic modulations for achieving behavioral gains (Sherlin
et al., 2011; Lotte et al., 2013; Bauer and Gharabaghi, 2015b;
Naros and Gharabaghi, 2015). Reinforcing with proprioceptive/
haptic feedback facilitates — in both healthy subjects and stroke
patients — the subjectsÕ control over sensorimotor motor-related
brain states (Gomez-Rodriguez et al., 2011; Brauchle et al., 2015;
Vukelic« and Gharabaghi, 2015a).

However, motor imagery-related brain self-regulation leads to
different aptitudes of BCI/BMI control in both healthy subjects

http://crossmark.crossref.org/dialog/?doi=10.1016/j.clinph.2016.06.020&domain=pdf
http://dx.doi.org/10.1016/j.clinph.2016.06.020
mailto:robert.bauer@cin.uni-tuebingen.de
mailto:alireza.gharabaghi@uni-tuebingen.de
mailto:alireza.gharabaghi@uni-tuebingen.de
http://dx.doi.org/10.1016/j.clinph.2016.06.020
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


R. Bauer et al. / Clinical Neurophysiology 127 (2016) 3156–3164 3157
and patients (Blankertz et al., 2010; Vidaurre and Blankertz, 2010;
Brauchle et al., 2015). To compensate for this variability in ability,
machine learning techniques and co-adaptive algorithms have
been proposed (Vidaurre et al., 2011b; Bryan et al., 2013). While
these approaches are proving useful for assistive brain interfaces
to detect the subjectÕs intention to move and to operate external
devices, they may conßict with the neurophysiological goal of
restorative devices to modify neuronal activity via operant condi-
tioning. Due to the treatment rationale of modulating speciÞc brain
features, the classiÞer of restorative brain-interface devises is usu-
ally constrained. Regarding motor rehabilitation, for example, the
feature space might be restricted to event-related spectral pertur-
bations in the sensorimotor beta-range which has been implied in
a large range of motor tasks (Kilavik et al., 2012; Brittain et al.,
2014), motor learning (Herrojo Ruiz et al., 2014) and corticospinal
excitability (Kraus et al., 2016a). Furthermore, recent Þndings have
revealed that movement-related beta-desynchronization in the
contralateral primary motor cortex is signiÞcantly lower in stroke
patients than in controls, while lower desynchronization is found
in patients suffering from greater motor impairment (Rossiter
et al., 2014). Moreover, recent prove-of-concept data suggest that
frequency-speciÞc operant conditioning of beta-band oscillations
with BMI neurofeedback may lead to task-speciÞc motor improve-
ment in chronic stroke (Naros and Gharabaghi, 2015). These obser-
vations therefore support the strategy of choosing sensorimotor
beta-band desynchronization as a therapeutic target for restorative
interventions in severely affected stroke patients.

However, such clinical constraints on the feature space will
result in low classiÞcation accuracies of restorative brain interface
technology in comparison to their assistive counterparts, where
more ßexible algorithms select and weight features to maximize
classiÞcation accuracy (Vidaurre et al., 2011b; Bryan et al., 2013).
This interaction between a constrained classiÞer and the subject,
who should be rewarded for achieving speciÞc brain states or
dynamic modulations, poses a particular challenge in the optimiza-
tion of neurofeedback in restorative approaches. Using robotic
training devices based on self-regulation of a constrained and
therefore very speciÞc brain activity is challenging and can be frus-
trating (Fels et al., 2015). This will necessitate a more holistic per-
spective on brain-interface technology considering factors such as
workload and effort (Hammer et al., 2012; Lotte et al., 2013; K�bler
et al., 2014; Lorenz et al., 2014). The cognitive load theory of learn-
ing suggests that the effort should be adequate, i.e. neither too high
nor too low (Schnotz and K�rschner, 2007; Bauer and Gharabaghi,
2015a). In order to optimize motor learning for restorative closed-
loop technology, knowledge about the participantÕs individual
mental effort may thus be relevant to adapt the difÞculty of the
intervention to the respective cognitive resources.

We recently applied a mathematical simulation of reinforce-
ment learning on the basis of the Bayesian control rule (Strens,
2000; Ortega and Braun, 2010) to study the theoretical impact of
difÞculty adaptation in linear classiÞcation, and could show that
adaption has the potential to improve reinforcement learning, par-
ticularly when the initial performance was poor (Bauer and
Gharabaghi, 2015a). It was along these lines that we aimed to
search for empirical evidence as to whether adaptive threshold-
setting facilitates participantsÕ control over restorative brain inter-
face devices. To this end, participants were requested to rate the
mental effort experienced in the course of the feedback task in
order to adapt its difÞculty. Moreover, we were interested in the
neurophysiological correlates of this adaptation process due to
our recent Þndings that both the performance and the perceived
workload of beta-band self-regulation were connected to distinct
cortical patterns in the alpha-range (Vukelic« et al., 2014) and in
the theta-range (Fels et al., 2015), respectively.
2. Methods

Twenty-one healthy, right-handed subjects (average age 27,
SD = 7.5 years, 13 females), took part in this study, which was
approved by the local ethics board, having given written, informed
consent and without receiving monetary compensation. The sub-
jects participated in an experiment that consisted of two blocks
separated by Þve minutes. The blocks were performed in a cross-
over design.

2.1. Study design

The subjects were asked to perform kinesthetic motor imagery
of opening their left hand. A robotic hand orthosis (Amadeo, Tyro-
motion GmbH, Graz) passively opened the attached left hand
whenever motor imagery-related event-related desynchronization
(ERD) in the beta-band (17—21 Hz) was detected on three elec-
troencephalography (EEG) electrodes over the right sensorimotor
area (FC4, C4 and CP4) (Gharabaghi et al., 2014a; Vukelic« et al.,
2014; Vukelic« and Gharabaghi, 2015b). The participants were
instructed to refrain from any overt movement during this brain-
robot interface (BRI) training. Each block consisted of 135 trials
(i.e. 9 runs, each consisting of 15 trials). After each run, the partic-
ipants were asked to rate their perceived mental effort on a scale
from �5 to +5. We instructed subjects that �5 and +5 would rep-
resent too easy and too difÞcult efforts, respectively, and that zero
would represent the optimal balance. Regardless of the block, sub-
jects were led to believe that the difÞculty of the task would be
adapted according to their rating, i.e. that we would decrease the
difÞculty if they felt over-challenged and increase the difÞculty if
they felt under-challenged. Subjects were, however, not informed
about the actual change. In the random block, changes were based
on a predetermined permutation of nine possible classiÞer thresh-
olds (�0.2—1.4 in steps of 0.2). In the adaptive block, the threshold
was initialized with a threshold of 0.6 and adjusted according to
the sign of the rating of perceived mental effort in steps of one Þfth
(0.2) of one classiÞer unit. Therefore, if the mental effort was
reported as too high (positive value), the threshold was decreased;
if the mental effort was reported as too low (negative value), the
threshold was increased; and if the mental effort was reported as
optimal (zero), the threshold remained unchanged.

All trials commenced with a preparation phase of 2 s, followed
by a 6 s movement imagination phase and a 6 s rest phase. Prepa-
ration and imagination phases were initiated by the auditory cues
Ôleft handÕ and ÔgoÕ respectively, which were the recorded words of
a female voice (Walter et al., 2012; Gharabaghi et al., 2014a). The
subjects were asked to perform kinesthetic motor imagery of open-
ing their left hand in each trial during the imagination phase and to
rest during the other phases.

2.2. Classification algorithm

Electroencephalography was recorded using 30 Ag/AgCl elec-
trodes (Fp1, Fp2, F3, Fz, F4, FC5, FC3, FC1, FC2, FC4, FC6, C5, C3,
C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3, Pz, P4,
O1, O2, referenced to FCz) and Brain-products DC ampliÞers with
a sampling rate of 1000 Hz and with the impedance kept below
10 kX. The classiÞcation algorithm was based on the average
power in the beta-range (17—21 Hz) over sensorimotor electrodes
(FC4, C4 and CP4). For online-analysis, we used the BCI2000 soft-
ware (Schalk et al., 2004), implementing an autoregressive model
based on the Burg Algorithm with a model order of 32 and a win-
dow size of 500 ms to update the beta-power value every 40 ms as
applied in previous studies with healthy subjects and neurological
patients (Gharabaghi et al., 2014b—d; Sp�ler et al., 2014). The mean
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and standard deviation during the rest phases (calculated online
for the last 15 s of rest, cumulating over trials) was used to trans-
form the distribution of power values into a (0,1) normal distribu-
tion. Values were subsequently multiplied with a negative one
(�1). Larger positive thresholds represented therefore the need
to desynchronize stronger, i.e. a more difÞcult task. Formally, we
employed matrix inversion to transform mean and covariance esti-
mates into feature weights x and bias b, resulting in a discrimina-
tive function D(x) for any feature vector x, which was then used to
estimate class membership. Additionally, by changing the thresh-
old parameter h, the instructor was able to control the performance
of the classiÞer regarding speciÞcity, sensitivity and accuracy
within the predeÞned constrained, regularized and scaled feature
space (Theodoridis and Koutroumbas, 2009), i.e. for given b and x .

x … R�1=2
R ð1:1Þ
b … �x T l R ð1:2Þ
DðxÞ … b þ h; x T� � 1
x

� �
ð1:3Þ

DifÞculty thresholds h were set every 15 trials (i.e. one run)
according to the block condition (adaptive or random) and were
then kept constant during these 15 trials. Within each trial, the
actual power was compared to the threshold every 40 ms. When-
ever the threshold was exceeded for at least Þve consecutive esti-
mates (i.e. 200 ms), the brain modulation was classiÞed as
sufÞcient and otherwise as insufÞcient. ClassiÞcation of sufÞcient
neuromodulation during the movement phase resulted in 40 ms
of passive extension of the Þngers by a robotic hand orthosis and
was counted as a true positive. If neuromodulation was classiÞed
as insufÞcient, Þngers maintained their position. ClassiÞcation of
sufÞcient neuromodulation during the rest or preparatory phase
was counted as a false positive. At the end of the movement phase,
the hand robot returned the Þngers into the starting position.
Thereby, the participants received feedback about their true posi-
tives only and not about their false positives.
2.3. Ratings of mental effort

The relationship between ratings of mental effort and threshold
was evaluated by calculating PearsonÕs correlation coefÞcient. This
analysis was based on the random block only, since the range of
thresholds differed in the adaptive block.

We compared the progression of thresholds during the adaptive
and the random block using separate one-way analysis of variance
with run as categorical factor, controlling for subjects as random
factor. We compared the average ratings of mental effort for the
adaptive and random block using a two-way analysis of variance
using threshold as continuous factor, controlling for subjects as
random factor. In addition, we compared the progression of ratings
of mental effort during the adaptive and the random block using
separate two-way analysis of variance with run as categorical fac-
tor and threshold as continuous factor, controlling for subjects as
random factor. Separate analyses of variance were applied due to
the fact that the variance in thresholds was predetermined and
constrained in the random block, but sampled in the adaptive
block based on the ratings of the subjects. This introduced an
unequal covariance and sample space between blocks impeding a
statistical comparison of their respective progression and the esti-
mation of interactions. Differences in the progression between
blocks have therefore to be interpreted with caution. One subject
failed to give a rating for the last run of the random block; this
was treated as a missing value.
2.4. Performance analysis

There are several measures for the performance analysis of BRI
(Thomas et al., 2013), with classiÞcation accuracy being the most
common (Thompson et al., 2013). For ofßine-analysis, the number
of true and false positives was recalculated ofßine across thresh-
olds h from �5 to 5 in steps of 0.1. The numbers were subsequently
transformed into average rates (Thomas et al., 2013). This entailed
dividing the average number of positives per phase by the maxi-
mum number of positives for each phase (i.e. 150 for the move
phase, and 200 for the rest and preparatory phase), to gain a true
positive rate (TPR), i.e. the rate of sufÞcient neuromodulation dur-
ing the move phase, and a false positive rate (FPR), i.e. the rate of
sufÞcient neuromodulation during the rest and preparatory phase.
On the basis of these measurements, we calculated the point-wise
unbiased classiÞcation accuracy (CA) and the positive predictive
value (PPV) (Altman and Bland, 1994; Thomas et al., 2013) for each
threshold h.

CAh …
TPRh þ ð1 � FPRhÞ

2
ð2:1Þ
PPVh …
TPRh

TPRh þ FPRh
ð2:2Þ

ClassiÞcation accuracy usually has a unimodal shape and peaks
at a certain threshold value hCA representing the maximum classi-
Þcation accuracy (see Section 2.1). While its location can be differ-
ent for each subject, the thresholds can be normalized post hoc by
shifting the origin to hCA, so that the classiÞcation accuracy would
peak at a threshold of zero. In this manuscript, we refer to such
thresholds as normalized thresholds.

hCA … arg maxh2RCAh ð3:1Þ

We Þtted a Þrst order polynomial between ratings of mental
effort (ME) and threshold which was solved for zero mental effort
(i.e. optimal balance between under and over-challenge), returning
the threshold for optimal mental effort (hME=0):

hME … a1ME þ a2 ð4:1Þ
hME…0 … a2 ð4:2Þ

Differences between the random and adaptive blocks on the
curves for classiÞcation accuracy and positive predictive value
were assessed with a paired t-test, assuming a signiÞcance level
of 0.01.
2.5. Bootstrap simulation

Considering that the different sampling for the adaptive and
random block impeded a direct comparison, the following analysis
was performed to explore whether the observed effects were gen-
uine or related to the adaptation rule only: Similar to 4.1., we Þtted
a linear model to predict the rating of mental effort for a given dif-
Þculty threshold based on data from the random block. We subse-
quently bootstrapped the sampling strategy of the adaptation
block (i.e. starting at 0.6, adapting based on sign of mental effort
rating) using 10,000 repetitions for this model based on the data
from the random block, i.e. simulating the adaptation rule. Addi-
tionally, we performed 10,000 bootstraps for the adaptive and ran-
dom block. We Þnally performed a kernel density estimation of the
average mental effort and thresholds for all three conditions, i.e.
random, simulated and adaptive.
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2.6. Electrophysiological analysis

Using the Fieldtrip toolbox (Oostenveld et al., 2011) and custom
written scripts for Matlab, the EEG signals were down-sampled to
500 Hz and divided into non-overlapping epochs of 4 s. The phase-
slope index (W) was calculated for the theta-range (3—7 Hz), alpha-
range (8—14 Hz) and beta range (15—30 Hz) (Nolte et al., 2008),
where Cij denotes the complex coherency between channels i and
j, df represents the frequency resolution and ðI Þ denotes the imag-
inary part. This results in Westimations for each epoch e. The sign
of W, but not its magnitude, is independent of signal power (Haufe
et al., 2013). The sign of W, averaged across all epochÕs e, is there-
fore a robust and power-independent measure of connectivity
between two electrodes and can be calculated as follows:

Wijðf Þ …

P E
e…1sgn I

P
f2FC

�
ij f ; eð ÞCij f; e þ dfð Þ

� �� �

E
ð4:3Þ

Since the expectation value of W is zero when there is no con-
nection between two areas, Wcan be tested for signiÞcance with a
t-test. In addition, we used multi-taper Fourier transform with dis-
crete prolate spheroidal sequences to calculate the power in the
theta-, alpha- and beta-range, averaged across all epochs and runs
of a subject. We calculated differences between the blocks on the
basis of a paired t-test at an alpha level of 0.05.
3. Results

3.1. Link between mental effort and difficulty threshold

We detected a signiÞcant positive PearsonÕs correlation
between the rating of mental effort and the threshold during the
random block (r = 0.65, p < 0.0001). This relationship was estab-
lished reliably also within subjects (t(20) = 8.59, p < 0.001, 95%
CI = 0.66—0.86).
3.2. Adaption affects difficulty and effort

Thresholds were distributed evenly during the random block
(F(8,160) = 0.61, p > 0.76, see Fig. 1A), but not during the adaptive
block (F(8,160) = 4.64, p < 0.001), where we instead discovered an
increase of threshold with runs (see Fig. 1B). We observed a random
distribution of mental effort for the random block (F(8,138) = 0.69,
p > 0.69, see Fig. 1D), but not for the adaptive block (F(8,139) = 8.03,
p < 0.02), where we instead found a decrease of mental effort with
runs (see Fig. 1E). These Þndings of the adaptation were genuine, i.e.
not found in the simulation (see Fig. 1C and F). The kernel density
estimation revealed similar average mental efforts for all three
conditions, but higher thresholds for the adaptation results as
compared to the random and simulation condition (see Fig. 2).

The average mental effort was rated signiÞcantly lower during
the adaptive block (D = 1.07, 95%CI = 1.52—0.62, F(1,354) = 21.76,
p < 0.001), and the difÞculty was signiÞcantly higher in the
adaptive block (D = 0.17, 95%CI = 0.09—0.26, F(1,356) = 15.81,
p < 0.001) as compared to the random block.
3.3. Adaption affects performance

The classiÞcation accuracy was signiÞcantly higher in the adap-
tive block by 2.39% (t(20) = 3.91, 95%CI = 0.01—0.037, p < 0.001) at
the point of maximum classiÞcation accuracy (see Fig. 3A). In addi-
tion, we discovered that the ßoor level of the positive predictive
value had risen considerably (see Fig. 3B), with a maximum
increase of 7.46% (t(20) = 2.85, 95%CI = 0.02—0.129, p < 0.01).
3.4. Threshold for optimal challenge higher than for classification
accuracy

According to Eq. (3.1), optimal challenge was achieved at a nor-
malized threshold of 0.80 (95%CI = 0.698—0.903, see Fig. 3C). This
indicated that the difÞculty level resulting in optimal balance of
mental effort was signiÞcantly higher than the one resulting in
maximum classiÞcation accuracy.

3.5. Neurophysiological parameters

During training sessions, a more distinct cortical activation pat-
tern was observed in the low frequency bands for the adaptive
than for the random condition.

The power and the connectivity in the theta-range (see Fig. 4A),
the alpha-range (see Fig. 4B) and the beta-range (see Fig. 4C)
exhibited a complex pattern of long-range and interhemispheric
connections between frontal, central and parietal areas. For the
theta-range, increased connectivity was most pronounced for CP2
to CPz3 (t(20) = 3.25, p = 0.004), O2 to CP5 (t(20) = 2.68,
p = 0.015) and Cz to FC4 (t(20) = 2.61, p = 0.017). The strongest,
yet not signiÞcant power modulation was a decrease over C6 (t
(20) = �1.90, p = 0.07). In the alpha-range, the increased connectiv-
ity was most pronounced for sending from FP2 to C4 (t(20) = 3.80,
p = 0.001), C4 to C1 (t(20) = 2.72, p = 0.013) and FP2 to FP1 (t(20) =
2.32, p = 0.031). The strongest, yet not signiÞcant power modula-
tion was an increase found over F4 (t(20) = 2.03, p = 0.06). For the
beta-range, increased connectivity was most pronounced for Cz
to FC1 (t(20) = 3.99, p = 0.001), CP6 to C6 (t(20) = 3.09, p = 0.006)
and Cz to FC4 (t(20) = 2.79, p = 0.011). The strongest, yet not
signiÞcant power modulation was an increase found over
F4 (t(20) = 1.48, p = 0.15).
4. Discussion

This study reveals that perceived mental effort is correlated
with the difÞculty of the neurofeedback training (see Fig. 3C). Dur-
ing threshold adaptation based on ratings of mental effort the dif-
Þculty threshold could be continuously increased while the
participants experienced a signiÞcantly decreased mental effort
(see Fig. 1B and E). Additionally, we found an increased CA and
PPV for the adaptive condition. We consider this as evidence that
effort-based threshold adaption may provide a feasible approach
to facilitate reinforcement learning of restorative brain-interface
technology.

4.1. Classification accuracy versus mental effort

To study the relationship between threshold and perceived
mental effort, we used a set of thresholds which were permuted
for each subject. To achieve sufÞcient variability within and com-
parability across subjects, we did neither choose constant thresh-
olds nor unsupervised bias-adaptation (Vidaurre et al., 2011a).
Furthermore, the achieved classiÞcation accuracy may be consid-
ered as low in comparison with unconstrained classiÞcation
approaches. However, it must be borne in mind that this limited
accuracy is a direct result of the constrained feature space, and,
as such, an inherent challenge of restorative neurofeedback
approaches in general. We therefore suggest that our Þndings
should not be interpreted in comparison with classiÞcation accura-
cies that might be achieved with unconstrained approaches which
are used for communication and control of assistive interfaces.

Instead, we argue that effort-based threshold-adaption may
provide beneÞts for restorative approaches, where therapeutical
constraints and regularization have to be applied. As suggested



Fig. 1. (A—D) depict the results derived from an analysis of variance. Error bars depict standard errors. A shows the threshold pattern for the random and B for the adaptive
block, indicating an increase of threshold with runs during the adaptive block. The ratings of mental effort are shown for the random (D) and adaptive block (E), indicating a
progressive reduction of mental effort during the adaptive block. C/F shows the simulated Þnding when applying the adaptation rule to the random data by performing a
bootstrap analysis of thresholds (C) and mental effort (F); error bars depict standard deviance of the mean across bootstrapped replications.

Fig. 2. The kernel density estimates of the average difÞculty threshold (A) and mental effort (B) based on 10,000 bootstrapped replications. The black trace indicates the
random blocks, the red trace the adaptive block, and the blue trace the simulated adaptation based on the data of the random block. While average mental efforts are similar
(B), adaptation results in higher thresholds compared to random or simulation (A).
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earlier, classiÞcation accuracy might not be the optimal criterion to
determine the difÞculty level for restorative approaches (Bauer and
Gharabaghi, 2015a,b; Naros et al., 2016; Bauer et al., 2016). Indeed,
the present results indicate that the balance between over- and
under-challenge might be optimal at a threshold signiÞcantly dif-
ferent from the one resulting in maximum classiÞcation accuracy.

4.2. Operant conditioning and zone of proximal development

Earlier studies pointed at mood, mastery conÞdence (Nijboer
et al., 2008) or the ability to concentrate (Hammer et al., 2012)
as linked to performance in neurofeedback tasks. Based on cogni-
tive load theory (Bauer and Gharabaghi, 2015a) we assumed a rela-
tionship between mental effort and classiÞcation accuracy and
expected, like others (Lotte et al., 2013), that difÞculty adaptation
would increase the performance.

Our concept considers the classiÞcation accuracy curve as the
zone of proximal development, as deÞned in the cognitive load
theory for instructional design (Schnotz and K�rschner, 2007;
Bauer and Gharabaghi, 2015a). According to this theory, the mag-
nitude of classiÞcation accuracy can be understood as a measure
of available cognitive resources (Schnotz and K�rschner, 2007),



Fig. 3. Average classiÞcation accuracy (A) and positive predictive value (B) over thresholds. The red and blue curves indicate the random and adaptive block, respectively.
SigniÞcant differences at a signiÞcance level of 0.01 are depicted as gray lines. (C) displays ratings of mental effort from all trials and subjects during the random block. Please
note that we added jitter to prevent the points from overlying. In all plots, classiÞcation accuracy is maximum at a threshold of zero.
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and not just as the performance of the classiÞer. According to this
concept, optimal challenge is achieved when extraneous and
intrinsic load are minimal, i.e. when the task is neither too difÞcult
nor too easy. This concept moreover predicts that alignment of task
difÞculty and participantÕs ability — as realized by effort-based
threshold adaptation — could free cognitive resources which would
be measurable as an increase in the magnitude of classiÞcation
accuracy. The Þndings of the present study are in full agreement
with these predictions. As anticipated, threshold adaptation led
to an increase of maximal classiÞcation accuracy.
Additionally, classiÞcation accuracy was elevated across a wide
range of thresholds on both sides of maximum classiÞcation accu-
racy (see Fig. 3). This implies a widening of the zone of proximal
development and increased availability of additional cognitive
resources for learning the task (Clark, 2006; Jong, 2009).

4.3. Clinical utility

Self-regulation of speciÞc brain activity is at the core of restora-
tive neurofeedback interventions that aim to reduce disease-



Fig. 4. The topography of power and phase slope index for signiÞcant differences between the adaptive and the random condition. Dots mark the position of EEG channels in
accordance with the 10—20 system. Since phase slope index is a directed measure of connectivity, we visualized signiÞcant connections between two electrodes as arrows.
Differences in power were color-coded and interpolated across the scalp. Saturation indicates the p-level on a log10 scale, while blue colors indicate decreased and red colors
increased power. Plot A shows the results for the theta-range, B for the alpha-range and C for the beta-range.
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speciÞc symptoms in a variety of neurological diseases, e.g. motor
deÞcits following stroke. Even when addressing motor symptoms
only, the targeted patient group, e.g. stroke survivors, may suffer
from impairments of cognitive abilities as well (de Vries et al.,
2011; Schaapsmeerders et al., 2013; Brainin et al., 2015), thereby
possibly limiting the appropriate evaluation of novel closed-loop
rehabilitation technology for severely affected patients (Brauchle
et al., 2015; Grimm et al., 2016; Grimm and Gharabaghi, 2016).
We therefore chose to begin by studying the impact of threshold
adaptation on the classiÞcation accuracy of restorative interfaces
in healthy subjects. Asking patients for their perceived mental
effort, is characteristically fast and easily applicable, and engages
the participants actively in the task by increasing their sense of
self-efÞcacy. This easy application may therefore facilitate restora-
tive approaches in clinical practice, perhaps even for patients suf-
fering from multiple impairments.

Brain state-dependent cortical stimulation of the post-stroke
brain has recently been studied with the aim to restore latent cor-
ticospinal connectivity (Gharabaghi et al., 2014a). In particular,
timing the stimulation to periods of decreased beta-power is
promising, since this state is connected to increased corticospinal
excitability (Kraus et al., 2016a, 2016b). In the context of closed-
loop brain stimulation (Kraus et al., 2016b; Raco et al., 2016), the
present Þnding of an increased positive predictive value during
effort-based threshold adaption would indicate increased speci-
Þcity of each stimulation pulse and might be even more important
than the elevated classiÞcation accuracy.

4.4. Cortical physiology

The cortical activation during the adaptive condition was
characterized by changed connectivity. Previous studies have
shown that cortical coupling in the alpha-band during the neuro-
feedback task was important for modulation of beta-band activity
(Vukelic« et al., 2014). In addition, an alpha-band resting state net-
work, connecting left parietal and right frontal areas, allowed
detecting those subjects who were particularly able (Bauer et al.,
2015) and/or challenged by the task (Fels et al., 2015). Moreover,
increased theta-activity provided information about reduced
workload during the task (Fels et al., 2015). The functional coupling
of coherent theta-band oscillations correlated also with the skill of
regional beta-modulation thus indicating a motor learning related
network (Vukelic« and Gharabaghi, 2015a). Furthermore, beta-band
connectivity of motor areas has been implied in predicting motor
learning (Wu et al., 2014). In this context, the present study
revealed that threshold-adaptation may enhance frontal networks
which have previously been associated with available resources for
brain self-regulation and central networks implied in motor learn-
ing. However, when considering the exploratory nature of this neu-
rophysiological analysis and the diverse pattern of connectivity
change appears diverse, these Þndings might be interpreted with
caution. Nonetheless, they tally well with neurophysiological con-
cepts linking theta-oscillations to working memory and sensori-
motor integration (Cruikshank et al., 2011; Fell et al., 2011) and
alpha-oscillations to sensory processing and multi-modal integra-
tion (Palva and Palva, 2007; Weisz et al., 2014). Activity in the
theta-band over parietal areas is also suggestive of a retrieval of
stored motor schemata and bottom-up integration of sensory and
motor information (Caplan et al., 2003; Cruikshank et al., 2011;
Vukelic« and Gharabaghi, 2015a). These results therefore suggest
that cortico-cortical coupling may serve as a biomarker for
online-monitoring of mental effort during neurofeedback. Since
theta-tACS has been shown to increase the working memory
capacity (Polan�a et al., 2012; Jau‚ovec and Jau‚ovec, 2013), such
stimulation might be considered as an adjunct intervention in
future experiments exploring brain self-regulation for restorative
interventions.
5. Conclusions

Adaptive threshold-setting may constitute an effective way to
reduce perceived mental effort and maximize classiÞcation accu-
racy and positive predictive value during neurofeedback tasks with
a therapeutically constrained feature space. Optimal balance of
mental effort was found to be located at a signiÞcantly higher dif-
Þculty threshold than maximum classiÞcation accuracy. The adap-
tive approach may reduce cognitive load and increase the zone of
proximal development to achieve improved performance (Bauer
and Gharabaghi, 2015a). Threshold adaptation based on mental
effort might therefore facilitate reinforcement learning with
restorative brain interfaces (Bauer and Gharabaghi, 2015b). Brain
state-dependent stimulation interventions (Gharabaghi et al.,
2014; Kraus et al., 2016b; Royter and Gharabaghi, 2016) might
particularly beneÞt from the increased positive predictive value
of the classiÞcation.
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